

China China Girls Math Olympiad

Day 1

1 (a) Determine if the set $\{1,2, \ldots, 96\}$ can be partitioned into 32 sets of equal size and equal sum. (b) Determine if the set $\{1,2, \ldots, 99\}$ can be partitioned into 33 sets of equal size and equal sum.

02 Let $\varphi(x)=a x^{3}+b x^{2}+c x+d$ be a polynomial with real coefficients. Given that $\varphi(x)$ has three positive real roots and that $\varphi(0)<0$, prove that

$$
2 b^{3}+9 a^{2} d-7 a b c \leq 0
$$

3 Determine the least real number a greater than 1 such that for any point P in the interior of the square $A B C D$, the area ratio between two of the triangles $P A B, P B C, P C D, P D A$ lies in the interval $\left[\frac{1}{a}, a\right]$.

4 Equilateral triangles $A B Q, B C R, C D S, D A P$ are erected outside of the convex quadrilateral $A B C D$. Let X, Y, Z, W be the midpoints of the segments $P Q, Q R, R S, S P$, respectively. Determine the maximum value of

$$
\frac{X Z+Y W}{A C+B D} .
$$

China China Girls Math Olympiad

Day 2

1 In convex quadrilateral $A B C D, A B=B C$ and $A D=D C$. Point E lies on segment $A B$ and point F lies on segment $A D$ such that B, E, F, D lie on a circle. Point P is such that triangles $D P E$ and $A D C$ are similar and the corresponding vertices are in the same orientation (clockwise or counterclockwise). Point Q is such that triangles $B Q F$ and $A B C$ are similar and the corresponding vertices are in the same orientation. Prove that points A, P, Q are collinear.

02 Let $\left(x_{1}, x_{2}, \cdots\right)$ be a sequence of positive numbers such that $\left(8 x_{2}-7 x_{1}\right) x_{1}^{7}=8$ and

$$
x_{k+1} x_{k-1}-x_{k}^{2}=\frac{x_{k-1}^{8}-x_{k}^{8}}{x_{k}^{7} x_{k-1}^{7}} \text { for } k=2,3, \ldots
$$

Determine real number a such that if $x_{1}>a$, then the sequence is monotonically decreasing, and if $0<x_{1}<a$, then the sequence is not monotonic.

3 On a given 2008×2008 chessboard, each unit square is colored in a different color. Every unit square is filled with one of the letters C, G, M, O. The resulting board is called harmonic if every 2×2 subsquare contains all four different letters. How many harmonic boards are there?

04 For positive integers $n, f_{n}=\left\lfloor 2^{n} \sqrt{2008}\right\rfloor+\left\lfloor 2^{n} \sqrt{2009}\right\rfloor$. Prove there are infinitely many odd numbers and infinitely many even numbers in the sequence f_{1}, f_{2}, \ldots.

