

Vietnam National Olympiad

2008
(1) Determine the number of solutions of simultaneous equations to $x^{2}+y^{3}=29$ and $\log _{3} x \cdot \log _{2} y=$ 1.
2) Given a triangle with acute angle $\angle B E C$, let E be the midpoint of $A B$. Point M is chosen on the opposite ray of $E C$ such that $\angle B M E=\angle E C A$. Denote by θ the measure of angle $\angle B E C$. Evaluate $\frac{M C}{A B}$ in terms of θ.

53 Let $m=2007^{2008}$, how many natural numbers n are there such that $n<m$ and $n(2 n+$ 1) $(5 n+2)$ is divisible by m (which means that $m \mid n(2 n+1)(5 n+2))$?

44 he sequence of real number $\left(x_{n}\right)$ is defined by $x_{1}=0, x_{2}=2$ and $x_{n+2}=2^{-x_{n}}+\frac{1}{2} \forall n=$ $1,2,3 \ldots$ Prove that the sequence has a limit as n approaches $+\infty$. Determine the limit.

5 What is the total number of natural numbes divisible by 9 the number of digits of which does not exceed 2008 and at least two of the digits are 9s?

6 Let x, y, z be distinct non-negative real numbers. Prove that

$$
\frac{1}{(x-y)^{2}}+\frac{1}{(y-z)^{2}}+\frac{1}{(z-x)^{2}} \geq \frac{4}{x y+y z+z x} .
$$

When does the equality hold?
7 Let $A D$ is centroid of $A B C$ triangle. Let (d) is the perpendicular line with $A D$. Let M is a point on (d). Let E, F are midpoints of $M B, M C$ respectively. The line through point E and perpendicular with (d) meet $A B$ at P. The line through point F and perpendicular with (d) meet $A C$ at Q. Let $\left(d^{\prime}\right)$ is a line through point M and perpendicular with $P Q$. Prove (d^{\prime}) always pass a fixed point.

I used geosketpad and fine the point
S. Can you prove it?

