

$\begin{array}{c} \textbf{Vietnam} \\ \textbf{Team Selection Tests} \\ 2008 \end{array}$

Day 1

- 1 On the plane, given an angle xOy. M be a mobile point on ray Ox and N a mobile point on ray Oy. Let d be the external angle bisector of angle xOy and I be the intersection of d with the perpendicular bisector of MN. Let P, Q be two points lie on d such that IP = IQ = IM = IN, and let K the intersection of MQ and NP.
 - 1. Prove that K always lie on a fixed line.
 - 2. Let d_1 line perpendicular to IM at M and d_2 line perpendicular to IN at N. Assume that there exist the intersections E, F of d_1 , d_2 from d. Prove that EN, FM and OK are concurrent.
- 2 Find all values of the positive integer m such that there exists polynomials with real coefficient P(x), Q(x), R(x, y) satisfying the condition: For every real numbers a, b which satisfying $a^m b^2 = 0$, we always have that P(R(a, b)) = a and Q(R(a, b)) = b
- 3 Let an integer n > 3. Denote the set $T = \{1, 2, ..., n\}$. A subset S of T is called wanting set if S has the property: There exists a positive integer c which is not greater than $\frac{n}{2}$ such that $|s_1 s_2| \neq c$ for every pairs of arbitrary elements $s_1, s_2 \in S$. How many does a wanting set have at most are there?

$\begin{array}{c} \textbf{Vietnam} \\ \textbf{Team Selection Tests} \\ 2008 \end{array}$

Day 2

- 1 Let m and n be positive integers. Prove that $6m|(2m+3)^n+1$ if and only if $4m|3^n+1$
- Let k be a positive real number. Triangle ABC is acute and not isosceles, O is its circumcenter and AD,BE,CF are the internal bisectors. On the rays AD,BE,CF, respectively, let points L,M,N such that $\frac{AL}{AD} = \frac{BM}{BE} = \frac{CN}{CF} = k$. Denote $(O_1), (O_2), (O_3)$ be respectively the circle through L and touches OA at A, the circle through M and touches OB at B, the circle through N and touches OC at C. 1) Prove that when $k = \frac{1}{2}$, three circles $(O_1), (O_2), (O_3)$ have exactly two common points, the centroid G of triangle ABC lies on that common chord of these circles. 2) Find all values of k such that three circles $(O_1), (O_2), (O_3)$ have exactly two common points
- 3 Consider the set $M = \{1, 2, ..., 2008\}$. Paint every number in the set M with one of the three colors blue, yellow, red such that each color is utilized to paint at least one number. Define two sets:

 $S_1 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_2 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_2 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_2 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_2 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_2 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_2 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_3 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_3 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_3 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_4 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_4 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_4 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_4 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_4 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_4 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_4 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_4 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_5 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_5 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_5 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_5 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_5 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_5 = \{(x, y, z) \in M^3 \mid x, y, z \text{ have the same color and } 2008 | (x + y + z) \}; S_5 = \{(x, y, z) \in M^3 \mid x,$